Effect of denervation on ATP consumption rate of diaphragm muscle fibers.

نویسندگان

  • Gary C Sieck
  • Wen-Zhi Zhan
  • Young-Soo Han
  • Y S Prakash
چکیده

Denervation (DNV) of rat diaphragm muscle (DIAm) decreases myosin heavy chain (MHC) content in fibers expressing MHC(2X) isoform but not in fibers expressing MHC(slow) and MHC(2A). Since MHC is the site of ATP hydrolysis during muscle contraction, we hypothesized that ATP consumption rate during maximum isometric activation (ATP(iso)) is reduced following unilateral DIAm DNV and that this effect is most pronounced in fibers expressing MHC(2X). In single-type-identified, permeabilized DIAm fibers, ATP(iso) was measured using NADH-linked fluorometry. The maximum velocity of the actomyosin ATPase reaction (V(max) ATPase) was determined using quantitative histochemistry. The effect of DNV on maximum unloaded shortening velocity (V(o)) and cross-bridge cycling rate [estimated from the rate constant for force redevelopment (k(TR)) following quick release and restretch] was also examined. Two weeks after DNV, ATP(iso) was significantly reduced in fibers expressing MHC(2X), but unaffected in fibers expressing MHC(slow) and MHC(2A). This effect of DNV on fibers expressing MHC(2X) persisted even after normalization for DNV-induced reduction in MHC content. With DNV, V(o) and k(TR) were slowed in fibers expressing MHC(2X), consistent with the effect on ATP(iso). The difference between V(max) ATPase and ATP(iso) reflects reserve capacity for ATP consumption, which was reduced across all fibers following DNV; however, this effect was most pronounced in fibers expressing MHC(2X). DNV-induced reductions in ATP(iso) and V(max) ATPase of fibers expressing MHC(2X) reflect the underlying decrease in MHC content, while reduction in ATP(iso) also reflects a slowing of cross-bridge cycling rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATP consumption rate per cross bridge depends on myosin heavy chain isoform.

In the present study, we tested the hypothesis that intrinsic differences in ATP consumption rate per cross bridge exist across rat diaphragm muscle (Dia(m)) fibers expressing different myosin heavy chain (MHC) isoforms. During maximum Ca(2+) activation (pCa 4.0) of single, Triton X-permeabilized Dia(m) fibers, isometric ATP consumption rate was determined by using an NADH-linked fluorometric t...

متن کامل

Effects of exercise on fiber properties in the denervated rodent diaphragm

In a unilaterally denervated diaphragm, atrophy of fast-twitch glycolytic (FG) fibers, but not of fast-twitch oxidative glycolytic (FOG) or slow-twitch oxidative (SO) fibers, occurs. The inhibition of atrophy in FOG and SO fibers may be due to the effects of stretch stimuli caused by respiratory contraction of the contralateral diaphragm. We examined the effects of exercise (treadmill running) ...

متن کامل

Different effects of ATP on the contractile activity of mice diaphragmatic and skeletal muscles.

Apart from acetyl-choline (Ach), adenosine-5'-trisphosphate (ATP) is thought to play a role in neuromuscular function, however little information is available on its cellular physiology. As such, effects of ATP and adenosine on contractility of mice diaphragmatic and skeletal muscles (m. extensor digitorum longa-MEDL) have been investigated in in vitro experiments. Application of carbacholine (...

متن کامل

Effect of Insulin on Carbohydrate Metabolism of Skeletal Muscle Fibers and Diaphragm from Control and Pancreatectomized Rats*Jf

Rat diaphragm muscle has been used almost exclusively for the investigation in vitro of skeletal muscle metabolism. However, the diaphragm is a specialized muscle adapted to constant activity and, with respect to oxygen consumption (1) and oxidative metabolism, seems to occupy an intermediate position between constantly active heart muscle and intermittently active skeletal muscle (2, 3). Histo...

متن کامل

Effect of insulin on carbohydrate metabolism of skeletal muscle fibers and diaphragm from control and pancreatectomized rats.

Rat diaphragm muscle has been used almost exclusively for the investigation in vitro of skeletal muscle metabolism. However, the diaphragm is a specialized muscle adapted to constant activity and, with respect to oxygen consumption (1) and oxidative metabolism, seems to occupy an intermediate position between constantly active heart muscle and intermittently active skeletal muscle (2, 3). Histo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 103 3  شماره 

صفحات  -

تاریخ انتشار 2007